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Abstract—Lighting is an essential tool in surgery. Altering the 

spectral distribution of the lighting can heighten visual contrast 

between anatomical features of interest and the surrounding 

tissues. Due to the difficulty in assessing lighting spectral 

distributions on surgical scenes, we use image segmentation 

algorithm as a means of testing the relative merits of model 

spectral distribution for surgical lighting, compared to 

conventional surgical lighting.  The relative accuracy in 

identifying the common bile duct (CBD), as known from the 

annotated collected hyperspectral images of surgical scenes, is 

used as a figure of merit to determine viability of lighting spectral 

models.  

Index Terms—surgical lighting, hyperspectral imaging, 

common bile duct, image segmentation 

I. INTRODUCTION  

Lighting is an essential tool for the surgeon but its spectral 

properties are not particularly designed to be task-specific.  

Computing the optimum lighting spectral distribution to 

heighten visual contrast between a desired anatomical feature 

from surrounding tissue based on their intrinsic optical 

reflectance property is promising but needs to be tested.  The 

testing can be done using human subjects viewing the same 

scene under the test lighting conditions.  However, this is 

difficult because it is not feasible to reproduce a surgical scene 

to test the lighting; reproducing the tissue spectral reflectance 

properties using surrogate materials is also difficult. A method 

of testing the effectiveness of the model lighting distribution is 

through the use of image segmentation algorithms and 

comparing the feature identification accuracy when the 

intrinsic reflectance spectra are convolved with current typical 

spectral light distribution and that when the intrinsic 

reflectance spectra are convolved with the designed spectral 

lighting.  

Identifying and locating the common bile duct (CBD) 

during cholecystectomies is important as injury to it can lead 

to serious and painful complications.  One of the causes of 

misidentification or missing it is attributed to visual 

misperception.  One way to augment the surgeon’s vision to 

aid in identifying and locating the CBD is through enhancing 

the visual contrast between the CBD and the surrounding 

tissues.  The CBD contains bile, which lends it a bluish-green 

hue.  By adjusting the spectral distribution of the surgical 

lighting, it is feasible to heighten the contrast between the 

CBD and surrounding tissues. The use of lighting provides the 

surgeon an immediately accessible tool for feature 

discrimination, without having to rely on image acquisition 

and processing which is difficult in a temporally demanding 

application.  

It should be noted that the intended technological product is 

task-specific lighting and not the image processing algorithm 

for identifying the CBD. The latter is merely used as a tool to 

check the feasibility of optimized lighting method for 

enhanced visual contrast, in lieu of testing with human 

subjects.  It is cumbersome to create even an already designed 

lamp.  Data that support its potential effectiveness as a 

surgical visualization tool would be highly beneficial.    

II.  HYPERSPECTRAL IMAGE DATA  

The objective is to design task-specific lighting and we use 

previously collected image data in order to calculate the 

optimal lighting.  Hyperspectral data over the human visual 

range (400 nm to 700 nm) of surgical scenes were collected 

using a NIST calibrated hyperspectral imager [1]. 

Hyperspectral imaging can yield useful information such as 

band-by-band images, but it is slow and expensive to 

implement for routine surgical work.   The data collected were 

from open surgeries where the CBD (normal, not diseased) was 

exposed and annotated by the surgeon.  Image data of a white 

reference plaque (99.9 % reflectance over the visual range) was 

also taken, which serves as the ‘blank’ by which the raw image 

is normalized against.  The normalization procedure allows the 

spectra of the ambient lighting during the image collection to 

be taken out leaving the intrinsic scene reflectance data.   

III. PRIOR WORK ON IMAGE DATA 

Normalized hyperspectral images are valuable data sets for 

testing image processing algorithms.  These surgical scenes 

were previously used to test robustness of image segmentation 

algorithm for discriminating the CBD within and between 



different data sets, using (annotated) CBD spectra from any 

one image on the other sets [1] since there are no “ground-

truth” CBD spectra. While there are several data sets, we use 

only one as in the test here.     

IV. CALCULATING ENHANCED CONTRAST LIGHTING 

The method of calculating optimum lighting spectral 

distribution to highlight the CBD has been described 

previously [2].    Briefly, the reflectance spectra of the CBD 

relative to surrounding tissues are reproduced from Ref 2 in 

Figure 1, along with the grayscale image and the screenshot 

during the hyperspectral data acquisition where the surgeon 

identifies the CBD structure.  

 

 
 

 

Figure 1. (Top left) Screenshot during hyperspectral image data acquisition 

where the surgeon points to the bile duct, (bottom) reflectance spectra of the 
regions of different types of tissues correlated to the colored areas in the 

grayscale image (top right).   

Optimum lighting computation is based on maximizing the 

total color difference, E*ab value, in the CIELAB colorspace 

[3] between two color stimuli.  We use the NIST Color 

Quality Scale calculator to compute this value for 

hyperspectral image patches corresponding to the CBD and 

the surrounding tissues.  NIST CQS is a spreadsheet tool 

designed for rating spectral lighting distributions for a variety 

of performance metrics including Color Rendering Index 

(CRI) [4,5].  A few lighting spectral distributions were tested 

to maximize the E*ab value. Out of the few tested, the 

spectra in Figure 1 showed promising results in the E*ab and 

is used as the model lighting in this test.  The model lighting 

spectra have a peak at 490 nm corresponding to the blue-green 

region of the visual range. Also shown are the spectra of a 

D65 standard illuminant, common room lighting.   

 

 

Figure 2. Spectra of D65 illuminant and the model lighting, of comparable 
total luminances.   

We have previously used computationally re-lighted images 

to show image differences with different lighting.  The 

computationally re-lighted image (Fig 3 right) is intended to 

show how the scene would appear to the surgeon’s eyes.  

 

 

Figure 3. At left is a digital photograph of the scene showing the common bile 
duct.  At center is a screenshot of the scene under 580 nm light during the 

hyperspectral image data collection with the surgeon’s annotation.  At right is 

the computationally ‘re-lighted’ image from the hyperspectral data with the 
model lighting spectra shown in Fig. 2.  

However, every color imaging software and every color 

presentation device has its own color management system, 

such that a computed ‘re-lighted’ image such as the one shown 

above may not be reliable.  A different approach to testing the 

comparative effectiveness of the light spectra is needed.   

V. RESULTS FROM TESTING LIGHTING EFFECTIVENESS 

The normalized hyperspectral image file is convolved with 

lighting spectra of interest and the human tristumulus values 

(xyz-bar).  The resulting hypercube data is still hyperspectral, 

where each image pixel has a spectral profile over the visual 

range (400 to 700 nm). This is the file operated on by the 

image segmentation algorithm. The algorithm is described in 

detail in Ref. 1 and searches for spatial and spectral similarity 

in all pixels in the image to the CBD pixels identified by the 

surgeon as the basis.  The algorithm has been shown to 

successfully identify the CBD, along with a few false-positive 

regions.  While the previous work in Ref 1 used spectral 

absorbance of the tissue as the spectral profile for similarity 

matching, in this work we use the reflectance convolved with 



the lighting and the human tristimulus values. This is intended 

to be representative of what the human eye would see.   

 

Figure 4. The green outlined region is the annotated CBD while the black 

outlined regions are the regions found by the algorithm as CBD. On the left is 
the normalized data only (no lighting), center is with D65 lighting and right is 

D65 with the model lighting designed to highlight the CBD. The true positive 

is only found when the model lighting is superimposed on the D65 lighting.      

Results of the test using the image segmentation algorithm 

are shown on Figure 4.  A search for regions with similar 

spatial and spectral shape to the CBD (true positive) over the 

whole image only yields false positives using the normalized 

data only (no lighting). When D65 spectra are applied, the 

search still yields only false positives, missing the true positive.  

When the model lighting is applied, along with the D65 room 

light, the search yields the true positive as well as a few false 

positives.  

This is a highly promising result in that the model spectra, 

which is intended to highlight the CBD, does improve the 

search algorithm outcome.  We can use the search algorithm 

and precision metrics (ratio of true positive to sum of true and 

false positive) to rate the relative performance of various model 

lighting. This is a quantitative approach and can save time and 

effort in finding the optimum spectral lighting distribution to 

highlight a desired anatomical feature that under normal room 

lighting offers little visual color difference.  Such lighting is 

designed to augment the surgeon’s vision for better feature 

discrimination.    
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